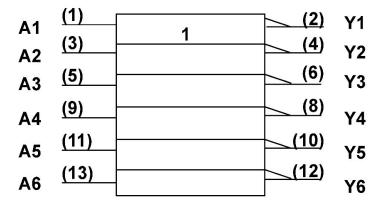


TRONTGRADE DATASHEET UT54ACS14E/UT54ACTS14E

Hex Inverting Schmitt Triggers

1/15/2018 Version #: 1.0


Features

- 0.6µm CRH CMOS Process
 - Latchup immune
- · High speed
- · Low power consumption
- Wide power supply operating range of 3.0V to 5.5V
- · Available QML Q or V processes
- 14-lead flatpack
- UT54ACS14E SMD 5962-96524
- UT54ACTS14E SMD 5962-96525

Function Table

Input A	Output Y
н	L
L	Н

Logic Symbol

Note:

1. Logic symbol in accordance with ANSI/IEEE standard 91-1984 and IEC Publication 617-12.

Description

The UT54ACS14E and the UT54ACTS14E are hex inverters with Schmitt trigger inputs. The circuits perform the Boolean function $Y = \overline{A}$.

The devices are characterized over full HiRel temperature range of -55°C to +125°C.

Pinouts

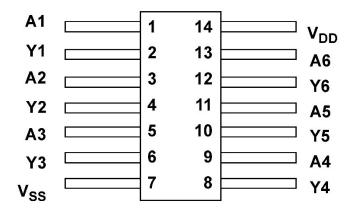
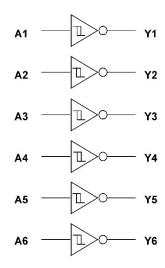



Figure 1: 14-Lead Flatpack, Top View

Logic Diagram

Operational Environment¹

Parameter	Limit	Units
Total Dose	1.0E6	rads(Si)
SEU Threshold ²	80	MeV-cm ² /mg
SEL Threshold	108	MeV-cm ² /mg
Neutron Fluence	1.0E14	n/cm²

- 1. Logic will not latchup during radiation exposure within the limits defined in the table.
- 2. Device storage elements are immune to SEU affects.

Absolute Maximum Ratings

Symbol	Parameter	Limit	Units
V _{DD}	Supply voltage	-0.3 to 7.0	V
V _{I/O}	Voltage any pin	-0.3 to V _{DD} +0.3	V
T _{STG}	Storage Temperature range	-65 to +150	°C
Tj	Maximum junction temperature	+175	°C
T _{LS}	Lead temperature (soldering 5 seconds)	+300	°C
Θ _{JC}	Thermal resistance junction to case	15 (ACS) 15.5 (ACTS)	°C/W
I _I	DC input current	±10	mA
P _D	Maximum package power dissipation permitted @ T _C = +125°C	3.3	W

Note:

- 1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, functional operation of the device at these or any other conditions beyond limits indicated in the operational sections is not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 2. Per MIL-STD-883, method 1012.1, Section 3.4.1, PD = $(T_{J(max)} T_{C(max)}) / \Theta_{JC}$

Recommended Operating Conditions

Symbol	Parameter	Limit	Units
V _{DD}	Supply voltage	3.0 to 5.5	V
V _{IN}	Input voltage any pin	0 to V _{DD}	V
T _C	Temperature range	-55 to +125	°C

DC Electrical Characteristics for the UT54ACS14E⁷

 $(V_{DD} = 3.0V \text{ to } 5.5V; V_{SS} = 0V^6; -55^{\circ}C < T_C < +125^{\circ}C)$

Symbol	De	escription	Condition	MIN	MAX	Units
V _{T+}	Schmitt trigger p	oositive going threshold ¹	V _{DD} from 3.0V to 5.5V		0.7V _{DD}	V
V _T -	Schmitt trigger r	negative going threshold1	V _{DD} from 3.0V to 5.5V	0.3V _{DD}		V
V _{H1}	Range of hystere	esis (V _{T+} - V _{T-})	V _{DD} from 4.5V to 5.5V	0.6	1.5	V
V _{H2}	Range of hystere	esis (V _{T+} - V _{T-})	V _{DD} from 3.0V to 3.6V	0.3	1.2	V
I _{IN}	Input leakage cu	irrent	$V_{IN} = V_{DD}$ or V_{SS}	-1	1	μΑ
V_{OL}	Low-level outpu	t voltage³	I _{OL} = 100μA V _{DD} from 3.0V to 5.5V		0.25	V
V _{OH}	High-level outpu	ıt voltage³	I _{OH} = -100μA V _{DD} from 3.0V to 5.5V	V _{DD} - 0.25		V
I _{OS1}	Short-circuit out	put current ^{2,4}	$V_O = V_{DD}$ and V_{SS} V_{DD} from 4.5V to 5.5V	-200	200	mA
I _{OS2}	Short-circuit out	put current ^{2,4}	$V_O = V_{DD}$ and V_{SS} V_{DD} from 3.0V to 3.6V	-100	100	mA
I _{OL1}	Low level outpu	t current ⁹ (sink)	$V_{IN} = V_{DD}$ or V_{SS} $V_{OL} = 0.4V$ V_{DD} from 4.5V to 5.5V	8		mA
I _{OL2}	Low level output current ⁹ (sink)		$V_{IN} = V_{DD}$ or V_{SS} $V_{OL} = 0.4V$ V_{DD} from 3.0V to 3.6V	6		mA
I _{ОН1}	High level outpu	it current ⁹ (source)	$V_{IN} = V_{DD}$ or V_{SS} $V_{OH} = V_{DD} - 0.4V$ V_{DD} from 4.5V to 5.5V	-8		mA
I _{OH2}	High level outpu	it current ⁹ (source)	$V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{OH} = V_{DD} - 0.4V$ $V_{DD} \text{ from } 3.0V \text{ to } 3.6V$	-6		mA
P _{total1}	Power dissipation	n ^{2,8}	C _L = 50pF V _{DD} from 4.5V to 5.5V		1.8	mW/ MHz
P _{total2}	Power dissipation	on ^{2,8}	C _L = 50pF V _{DD} from 3.0V to 3.6V		0.72	mW/ MHz
		Pre-Rad All Device Types			10	
I _{DDQ} S	Quiescent Supply Current	Post-Rad Device Type - 03	$V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{DD} = V_{DD} \text{ MAX}$		50	μΑ
	Current	Post-Rad Device Type - 02			130	
C _{IN}	Input capacitano	ce ⁵	$f = 1MHz$, $V_{DD} = 0$		15	pF
C _{OUT}	Output capacita	nce 5	$f = 1MHz$, $V_{DD} = 0$		15	pF

Notes:

- 1. Functional tests are conducted in accordance with MIL-STD-883 with the following input test conditions: $V_{IH} = V_{IH}(min) + 20\%$, 0%; $V_{IL} = V_{IL}(max) + 0\%$, 50%, as specified herein, for TTL, CMOS, or Schmitt compatible inputs. Devices may be tested using any input voltage within the above specified range, but are guaranteed to $V_{IH}(min)$ and $V_{IL}(max)$.
- 2. Supplied as a design limit but not guaranteed or tested.
- 3. Per MIL-PRF-38535, for current density ≤5.0E5 amps/cm², the maximum product of load capacitance (per output buffer) times frequency should not exceed 3,765pF/MHz.
- 4. Not more than one output may be shorted at a time for maximum duration of one second.
- 5. Capacitance measured for initial qualification and when design changes may affect the value. Capacitance is measured between the designated terminal and V_{SS} at frequency of 1MHz and a signal amplitude of 50mV rms maximum.
- 6. Maximum allowable relative shift equals 50mV.
- 7. Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si), and 1E6 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.
- 8. Power dissipation specified per switching output.
- 9. Guaranteed by characterization, but not tested.

AC Electrical Characteristics for the UT54ACS14E²

 $(V_{DD} = 3.0V \text{ to } 5.5V; V_{SS} = 0V^1, -55^{\circ}C < T_C < +125^{\circ}C)$

Symbol	Parameter	Condition	VDD	Minimum	Maximum	Unit
		C = E0nE	3.0V to 3.6V	2	18	ns
t _{PHL}	Input to Yn	C _L = 50pF	4.5V to 5.5V	2	14	ns
	land to Va	C 50-5	3.0V to 3.6V	2	17	ns
t _{PLH}	Input to Yn	C _L = 50pF	4.5V to 5.5V	2	13	ns
	land to Va	C 30-F	3.0V to 3.6V	2	14	ns
t _{PHL}	Input to Yn	C _L = 30pF	4.5V to 5.5V	2	10	ns
			3.0V to 3.6V	2	13	ns
t _{PLH}	Input to Yn	C _L = 30pF	4.5V to 5.5V	2	9	ns

- 1. Maximum allowable relative shift equals 50mV.
- 2. Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si), and 1E6 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.

DC Electrical Characteristics for the UT54ACTS14E⁷

 $(V_{DD} = 3.0V \text{ to } 5.5V; V_{SS} = 0V^6; -55^{\circ}C < T_C < +125^{\circ}C)$

Symbol		Description Condition		MIN	MAX	Unit
V _{T+1}	Schmitt trigger	positive-going threshold ¹	V _{DD} from 4.5V to 5.5V		2.25	V
V _{T+2}	Schmitt trigger	positive-going threshold ¹	V _{DD} from 3.0V to 3.6V		2.0	V
V _{T-1}	Schmitt trigger	negative-going threshold ¹	V _{DD} from 4.5V to 5.5V	0.5		V
V _{T-2}	Schmitt trigger	negative-going threshold ¹	V _{DD} from 3.0V to 3.6V	0.5		V
V _{H1}	Range of hyster	esis (V _{T+1} - V _{T-1})	V _{DD} from 4.5V to 5.0V	0.4	1.5	V
V _{H2}	Range of hyster	esis (V _{T+2} - V _{T-2})	V _{DD} from 3.0V to 3.6V	0.2	1.2	V
I _{IN}	Input leakage cu	urrent	$V_{IN} = V_{DD}$ or V_{SS}	-1	1	μΑ
V _{OL1}	Low-level outpu	it voltage³	I_{OL} = 8mA V_{DD} from 4.5V to 5.5V		0.4	V
V_{OL2}	Low-level outpu	it voltage³	$I_{OL} = 6mA$ V_{DD} from 3.0V to 3.6V		0.4	V
V _{OH1}	High-level outp	ut voltage³	I_{OH} = -8mA V_{DD} from 4.5V to 5.5V	0.7V _{DD}		V
V _{OH2}	High-level outp	ut voltage³	I_{OH} = -6mA V_{DD} from 3.0V to 3.6V	2.4		V
I _{OS1}	Short-circuit ou	tput current ^{2,4}	$V_O = V_{DD}$ or V_{SS} V_{DD} from 4.5V to 5.5V	-200	200	mA
I _{OS1}	Short-circuit ou	tput current ^{2,4}	$V_O = V_{DD}$ or V_{SS} V_{DD} from 3.0V to 3.6V	-100	100	mA
I _{OL1}	Low level outpu	t current ⁹	$V_{IN} = V_{DD}$ or V_{SS} $V_{OL} = 0.4V$ V_{DD} from 4.5V to 5.5V	8		mA
I _{OL2}	Low level outpu	t current ⁹	$V_{IN} = V_{DD}$ or V_{SS} $V_{OL} = 0.4V$ V_{DD} from 3.0V to 3.6V	6		mA
I _{OH1}	High level outpu	ut current ⁹	$V_{IN} = V_{DD}$ or V_{SS} $V_{OH} = V_{DD}$ -0.4V, V_{DD} from 4.5V to 5.5V	-8		mA
I _{OH2}	High level outpu	ut current ⁹	$V_{IN} = V_{DD}$ or V_{SS} $V_{OH} = V_{DD} - 0.4V$ V_{DD} from 3.0V to 3.6V	-6		mA
P _{total1}	Power dissipation	on ^{2,8}	C _L = 50pF V _{DD} from 4.5V to 5.5V		1.3	mW/ MHz
P _{total2}	Power dissipation ^{2,8}		CL = 50pF V _{DD} from 3.0V to 3.6V		0.5	mW/ MHz
		Pre-Rad All Device Types			10	
I_{DDQ}	Quiescent Supply Current Post-Rad Device Type - 03		$V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{DD} = V_{DD} \text{ MAX}$		50	μΑ
		Post-Rad Device Type - 02			130	

Symbol	Description	Condition	MIN N	1AX Unit
ΔI_{DDQ}	Quiescent Supply Current Delta	For input under test $V_{IN} = V_{DD} - 2.1V$ For all other inputs $V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{DD} = 5.5V$	3.1	mA
C _{IN}	Input capacitance ⁵	$f = 1MHz$, $V_{DD} = 0$	15	pF
C _{OUT}	Output capacitance ⁵	$f = 1MHz$, $V_{DD} = 0$	15	pF

Notes:

- 1. Functional tests are conducted in accordance with MIL-STD-883 with the following input test conditions: $V_{IH} = V_{IH}(min) + 20\%$, 0%; $V_{IL} = V_{IL}(max) + 0\%$, 50%, as specified herein, for TTL, CMOS, or Schmitt compatible inputs. Devices may be tested using any input voltage within the above specified range, but are guaranteed to $V_{IH}(min)$ and $V_{IL}(max)$.
- 2. Supplied as a design limit but not guaranteed or tested.
- 3. Per MIL-PRF-38535, for current density ≤5.0E5 amps/cm², the maximum product of load capacitance (per output buffer) times frequency should not exceed 3,765pF/MHz.
- 4. Not more than one output may be shorted at a time for maximum duration of one second.
- 5. Capacitance measured for initial qualification and when design changes may affect the value. Capacitance is measured between the designated terminal and V_{SS} at frequency of 1MHz and a signal amplitude of 50mV rms maximum.
- 6. Maximum allowable relative shift equals 50mV.
- 7. Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si), and 1E6 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.
- 8. Power dissipation specified per switching output.
- 9. Guaranteed by characterization, but not tested.

AC Electrical Characteristics for the UT54ACTS14E²

 $(V_{DD} = 3.0V \text{ to } 5.5V; V_{SS} = 0V^1, -55^{\circ}C < T_C < +125^{\circ}C)$

Symbol	Parameter	Condition	VDD	Minimum	Maximum	Unit
	Land to Va	C = E0nE	3.0V to 3.6V	2	20	nc
t _{PHL}	Input to Yn	C _L = 50pF	4.5V to 5.5V	2	9	ns
	Innut to Va	C - F0×F	3.0V to 3.6V	3	20	nc
t _{PLH}	Input to Yn	C _L = 50pF	4.5V to 5.5V	2	12	ns

- 1. Maximum allowable relative shift equals 50mV.
- 2. Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si), and 1E6 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.

Packaging

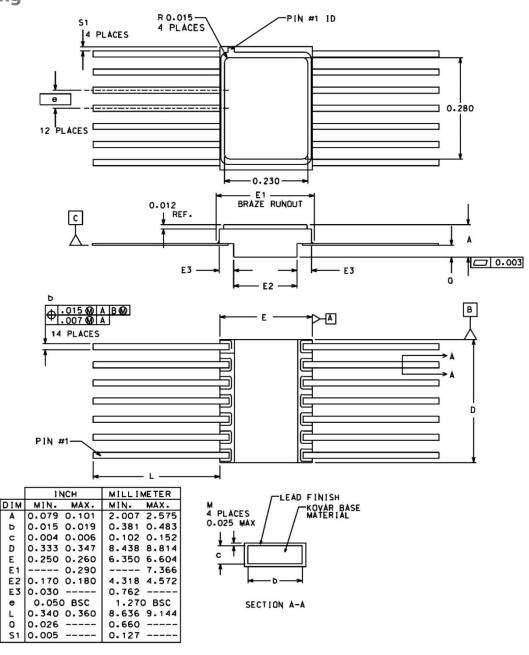
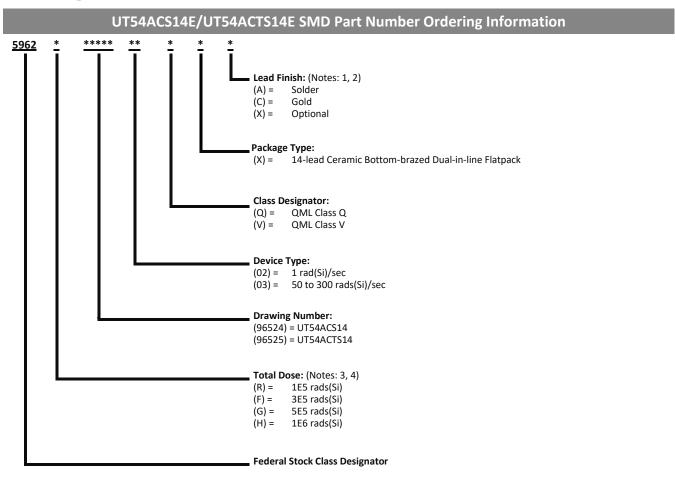


Figure 2: Figure 1: 14-lead Flatpack

Notes

- 1. All exposed metallized areas are gold plated over electroplated nickel per MIL-PRF-38535.
- The lid is electrically connected to V_{SS}.


D

Q

- Lead finishes are in accordance with MIL-PRF-38535.
- Dimension symbol is in accordance with MIL-PRF-38533.
- 5. Lead position and colanarity are not measured.

Ordering Information

- 1. Lead finish (A,C, or X) must be specified.
- 2. If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).
- 3. Total dose radiation must be specified when ordering. QML-2 and V is not available without radiation testing. For prototyping inquiries, contact factory.
- 4. Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si) or 1E6 rads(Si) and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.

Revision History

Date	Revision #	Author	Change Description	Page #
10/17		RT	Edited P _{TOTAL2} Edited I _{DDQ} AC Electricals Added new Frontgrade Data Sheet template to the document.	4, 5, 6
1/18		RT	Updates to reflect current SMD	

Datasheet Definitions

	Definition
Advanced Datasheet	Frontgrade reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change . Specifications can be TBD and the part package and pinout are not final .
Preliminary Datasheet	Frontgrade reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.
Datasheet	Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.

Frontgrade Technologies Proprietary Information Frontgrade Technologies (Frontgrade or Company) reserves the right to make changes to any products and services described herein at any time without notice. Consult a Frontgrade sales representative to verify that the information contained herein is current before using the product described herein. Frontgrade does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by the Company; nor does the purchase, lease, or use of a product or service convey a license to any patents, rights, copyrights, trademark rights, or any other intellectual property rights of the Company or any third party.