1.0 Introduction

CAES Quad Voltage Supervisors (UT04VS33P, UT04VS50P) find broad applications in voltage monitoring, voltage sequencing, and Fault Detection, Isolation and Recovery (FDIR). The voltage sequencing function is important for FPGA and ASIC designs that require a fixed order of voltage power-up for the core, high-speed I/O, and low-speed I/O power supplies to prevent contention and anomalously high currents. In the same way, they also often require a power down sequence that reverses the forward order of power up. Stand-alone CAES Quad Voltage Supervisors define the order for power-up sequencing and maintain this same order during power-down. This Reference Design provides a simple method of using a minimal number of 8-bit (8-b) MSI logic gates with CAES Quad Channel Voltage Supervisors to create the CASE Intelligent Power Sequencer Reference Design that powers-down system power rails in the reverse order of power up.

2.0 Device Features and Demonstration Board

The CAES Intelligent Power Sequencer as described in this Reference Design document generates forward power-up and reverse power-down voltage sequences useful in power systems design. The block diagram is shown as <u>Figure</u> <u>1</u>. There are four primary functional parts of the design:

1) The 8-b MSI Power Sequencing Logic, consisting of three required logic ICs: a) CAES UT54ACS/ACTS02E Quad 2-Input NOR Gate , b) CAES UT54ACS/ACTS04E Hex Inverters , and c) CAES UT54ACS/ACTS08E Quad 2-Input AND Gate. One additional, supplemental logic/driver IC is included for driving the discrete LED display.

2) Four identical Voltage Regulator ICs for generating the four system-level power rails.

3) One CAES UT04VS33P Quad Voltage Supervisor IC for voltage monitoring and as part of the overall voltage sequencing logic.

4) One 5.0V to 3.3V Voltage Regulator is also included, representing a stable, system-level power supply that generates VDD=3.3V for the 8-b RHMSI Logic and the UT04VS33P Voltage Supervisor. The CAES Intelligent Power Sequencer Demonstration Board is shown in Figure 2.

Voltage comparators in the UT04VS33P Quad Voltage Supervisor generate "voltage good" enable logic signals (VOUTx) to sequence a series of four voltage regulators. The Quad Supervisor VOUTx signals serve as flags indicating that each monitored system voltage is within tolerance, which are 3.3V, 2.5V, 1.8V, and 1.5V nominal voltages in this application. The Quad Supervisors RESET/RESETB outputs provide final reset de-assert after all system voltages are within tolerance.

The CAES Intelligent Power Sequencer provides all hardware necessary for demonstrating the capabilities of forward order power-up, and reverse order power-down voltage sequencing via a visual display of four each of green and red light-emitting diodes (LEDs) turning on and off in the correct sequence, along with suitable time delays. The green LEDs indicate that the corresponding power rail is enabled, active, and on, while the red LEDs indicate that the corresponding power rail is disabled, inactive, and off. The board circuit design components, with the exception of the CAES UT04VS33P Voltage Supervisor (U10), are implemented with commercial grade integrated circuits (ICs), and discrete components, since voltage regulators and logic gates are typically standard functions and pinouts. The board is intended to show the power-up/down sequencing function, and is intended for terrestrial use only in non-radiation, benign environments. For a sequencer design suitable for radiation or other harsh environments, the user would substitute the CAES 8-b RHMSI logic parts listed above, and in the Reference Design schematics for the necessary logic, along with all other ICs, such as voltage regulators, and discrete components as determined by the user to meet their particular system-level environmental requirements.

CAES Intelligent Power Sequencer Using the UT04VS33P Quad Voltage Supervisor

Figure 1. CAES Intelligent Power Sequencer Block Diagram

Figure 2. CAES Intelligent Power Sequencer Demonstration Board, Top View

3.0 Intelligent Power Sequencing Application

Demonstration Board operation: Toggling the two position SEQ_UP-DN SPDT switch from a logic 0 to a logic 1 initiates the power-up sequence. The time delay for power-up sequencing is set by the external CDLY capacitor value. The Demonstration Board uses CDLYx values of 1μ F for approximately 1s of delay. Voltage comparators in the UT04VS33P Quad Supervisor create a series of enable signals to start the monitored voltages and sequence them up in order of VOUT1, VOUT2, VOUT3, VOUT4. The comparators in the Quad Supervisor verify each voltage rail is within tolerance before enabling the next rail. All four green LEDs illuminated indicates that the power-up sequence is complete.

Toggling the SEQ_UP-DN switch from logic 1 to logic 0 initiates the Voltage Supervisor and MSI Logic to disable the voltage regulators in the reverse order of the power-up sequence. The Voltage Supervisor disables each power rail as the logic waterfall occurs. Since it's desirable from a system-level to power-down the power supply rails quickly in the event of a fault, this shutdown normally occurs in 40µs or less. However, the Demonstration Board uses a simple $1M\Omega/1\mu$ F R-C network at each of the UT04VS33P VOUTx logic outputs to add an approximate 1s delay in order to provide sufficient time for observable LED sequencing. All four red LEDs illuminated indicates that the power-down sequence is complete.

Since this R-C delay at the VOUTx outputs affects both rising and falling VOUTx edges, it will be combined with the power-up sequence CDLY delay to yield an approximate 2s total delay vs. an approximate 1s delay for power-down sequencing. The voltage sequencing and delays are shown in the oscilloscope voltage vs. time plots of Figures 3, 4, and 5, below, where "time" is the x-axis and "voltage" is the y-axis. These waveforms were measured at the four voltage regulator output pins on the Demo. Board (J7-J10) using high impedance, $1M\Omega$ oscilloscope probes, with a horizontal (time) scale of either 1s/div., or 2s/div. The vertical (voltage) axis scale is 1.0V/div. Figure 6 shows the core CAES Intelligent Power Sequencer logic signals and logic implementation, without delay elements or LED display circuits. The Demonstration Board schematics are provided as Figures 7-11.

Figure 3. UT04VS33P-VSEQ-EVB Oscilloscope Voltage Power-Up Sequence Waveforms

Figure 4. UT04VS33P-VSEQ-EVB Oscilloscope Voltage Power-Down Sequence Waveforms

Figure 5. UT04VS33P-VSEQ-EVB Oscilloscope Combined Voltage Power-Up/Down Sequence Waveforms

REFERENCE DESIGN

Figure 6. Core Logic Signal Connections +MSI Logic Schematic

4.0 Conclusion

The CAES Intelligent Power Sequencer uses the UT04VS33P Quad Voltage Supervisor in combination with a small number of 8-b RHMSI logic gates to sequence voltage rails in any order with adjustable delays for each rail. This design provides a solution to FPGA and ASIC sequenced power-up and power down requirements. The CAES Quad Voltage Supervisors power-down implementation sequences quickly, which allows for emergency shutdowns. However, if power-down delays are necessary, a simple R-C network connected to the voltage supervisor ENx, or VOUTx pins is an option, as shown in this Reference Design. Please see schematics and bill of materials (BoM) included below for additional information.

Table 1. Demonstration Board Reference Design Bill of Materials (BoM)

Item #	Qtv.	Description	Reference Number	Mfr.	Mfr. Part #	PCB Footprint	Comp. Value	Digi-Kev	Digi-Key Part #
			CV01 CDLY1 CV02 CDLY2				·· • • · · ·	0 -7	0 .,
			CVO3 CDLY3 CVO4 CDLY4						
1	12	CAP CER 11/E 16// X7R 0603	C27 C28 C20 C40	Sameung		SMT0602	1	Digi-Kov	1276-6612-1-ND
1	12		037,030,035,040	Sumsung	CLIOBIOSKOOVIINC	C_CASE / 2312 / 0 236"L v	101	Digi Key	12/0 0015 1 110
						0 126"W/6 00mm x			
2	1	CAD TANT 47/15 10/ 10% 2212	CE	Vichay Enragua	2020/762001002752	2.20mm)	47115	Digi Kov	719 1097 1 ND
2	1	CAP CEP 0 2211E 16V 10/0 2312	C5	Murata	CDM199071C224KA01D	SMT0602	4701 0 221 IE	Digi-Key	/10-220/-1-ND
5	1		0	Warata	GRIMIODIT/ICSS4RADID	B_CASE / 1/11 / 0 138"L v	0.5501	Digi Key	450 5254 1 100
						0 110"W/(3 50mm x			
4	1	CAP TANT 10UE 10V 10% 1411	C7	Vishay Sprague	293D106X9010B2TF3	2 80mm)	10UF	Digi-Key	718-1122-1-ND
5	5	CAP CER 0 1/1E 10/ X78 0603	C8 C10 C12 C14 C16	Kemet	C0603C104K8RACTU	SMT0603	0 11 JE	Digi-Key	399-1095-6-ND
6	5	CAP CER 10000PE 25// X7R 0603	C9 C11 C13 C15 C17	Samsung		SMT0603	0.0111F	Digi-Key	1276-6531-1-ND
7	1	CAP CER 2 2UE 10V X78 0603	C25	Murata	GRM188R71A225KF15D	SMT0603	2 2LIE	Digi-Key	490-4520-1-ND
, 8	4	CAP CER 4 7UE 16V X7R 0805	C28 C29 C30 C31	Murata	GRM21BR71C475KE51	SMT0805	4 7UF	Digi-Key	490-14466-1-ND
9	1	CAP CER 68PE 16V COG/NP0 0603	C26,C25,C30,C31	Kemet	C0603C68014GAC7867	SMT0603	4.701 68PF	Digi-Key	399-15418-1-ND
10	4	LED RED CLEAR 0603 SMD	01 02 03 04	lite-On	LTST_C190CKT	LED 0603	RED	Digi-Key	160-1181-1-ND
11	6		D5 D6 D7 D8 D9 D10	Lite-On	LTST_C190GKT	LED_0603	GREEN	Digi-Koy	160-1192-1-ND
12	2	HDWR BANANA JACK UNINS	11 12	Pomona	3267	MH256 PLATED	BANANA IACK	Digi-Key	501-1115-ND
12	5	CONN HEADER VERT 2005 100"	14 17 18 19 110	Sulling			HEADER 2	Digi-Key	\$1011EC_02_ND
15	3	CONN HEADER VERT 2POS .100	14,17,10,19,110	Sullins	PRPC0023AAN-RC	ZXI_HEADEN	ITEADER 2	Digi-Key	31011EC-02-ND
14	5	100"	14 17 18 19 110	Sulling		2v1 ILINADER-SHLINT		Digi-Kov	50227-ND
14	1	RES SMD 1M OHM 1% 1/10W 0603	PV/01 PV/02 PV/02 PV/04	Vichay Dale		SMT0602	1M	Digi-Key	541-1 00MHCT-ND
16	1	RES SMD 24 9K OHM 1% 1/10W 0003	P1	Panasonic	ED1-3EKE34031/	SMT0602	24 04	Digi-Key	
10	1	RES SMD 14 7K OHM 1% 1/10W 0003	P2	Panasonic	ED1-2EKE1472V	SMT0602	24.5K	Digi-Key	P14 7KHCT-ND
10	1	RES SNID 14.7K OHNI 1/8 1/10W 0003	N2 D9	Vichay Dalo		SMT0603	14.71	Digi-Key	
10	1	RES SIND IN OHIVI 1/ 1/ 10/00005	NO 021 022 020 020	Vishay Dale		SMT0602	1004	Digi-Key	541-1.00KHCT-ND
19	2	RES SIND 100K OHIVI 1% 1/10W 0603	N21,N22,N29,N90	Panaconic		SMT0602	100K אד זכ	Digi-Key	
20	1	RES SMD 33.7K OHM 1% 1/10W 0003	D25	Panasonic	EDI 25/51152/	SMT0603	11 EV	Digi-Key	
21	1	RES SMD 16 9K OHM 1% 1/10W 0003	R23	Panasonic	ERJ-3EKF1132V	SMT0602	11.5K	Digi-Key	P11.5KHCT-ND
22	6	RES SNID 10: SK OHNI 1% 1/10W 0003	D 27 D 20 D 25 D 26 D 27 D 20	Vichay Dalo		SMT0603	10.51	Digi-Key	
23	1	RES SNID 10K OHN 1% 1/10W 0003	R27,R20,R33,R30,R37,R30	Panasonic		SMT0602	10K	Digi-Key	D41-10.0KHCT-ND
24	1	RES SMD 41.2K OHM 1% 1/10W 0003	022	Panasonic	ED1 25/52072	SMT0603	אד פר אד פר	Digi-Key	
25	1	RES SIVID 28.7K OHIVI 1/8 1/10/0003	P2/	Panasonic	ERJ-3EKF2072V	SMT0602	20.7K	Digi-Key	PZ6.7KHCT-ND
20	1	RES SMD 220 OHM 1% 1/10W 0003	P20 P/0 P/1 P/2	Panasonic	ER1_2EKE2200V	SMT0602	220	Digi-Key	
27	4	RES SMD 220 OHM 1% 1/10W 0003	D/2	Panasonic	ER1-2EKE1500V	SMT0602	150	Digi-Key	P150HCT-ND
20	5	RES SMD 60 4 OHM 1% 1/10W 0603	DAA DAS DAG DA7 DA9	Vishay Dale		SMT0602	60	Digi-Key	541-60 AHCT-ND
30	6	RES SMD 3K OHM 1% 1/10W 0603	R60 R61 R62 R63 R64 R65	Panasonic	ER1-3EKE3001V	SMT0603	3K	Digi-Key	P3 00KHCT-ND
21	1		SW/1	F-Switch	2001 ISD1T1A 1M7PE	2001 ISD1T1A1M7DE	20011501T1010470E	Digi-Koy	FG4916-ND
32	1	TEST POINT PC MINI 0 040"D RED	TP1	Keystone	5000			Digi-Key	36-5000-ND
32	1	TEST POINT PC MINI 0.040"D YELO	TP2	Keystone	5004	TP_40D	TESTPOINT	Digi-Key	36-5004-ND
34	1		TP5	Keystone	5001	TP_40D	TESTPOINT	Digi-Kov	36-5001-ND
35	1	IC REGIDO ADI 1 5A PPAK	U1	ST Microelectronics	LD29150PTR	nnak5	1 D29150	Digi-Key	497-4250-1-ND
36	1	IC GATE AND OUAD 2-IN 14-SOIC	112	Texas Instruments	SN74AHC08DR	14-SOIC 8 65v3 9v1 27mm	SN74AHC08DR	Digi-Kov	296-4523-1-ND
37	1	IC GATE NOB OLIAD 2-IN 14-SOIC	113	Texas Instruments		14-SOIC_8.65x3.9x1.27mm	SN74AHC02DR	Digi-Key	296-4511-1-ND
38	1	IC INVERTER HEX 1-IN 14-SOIC	114	Texas Instruments		14-SOIC_8.65x3.9x1.27mm	SN74AHCO4DR		296-4516-1-ND
30	1		04	Texas instruments	SN74AIICO4DIX	14-3010_8.03x3.3x1.2711111	SINTAAIICO4DIX	Digi-key	250-4510-1-110
39	1	20-5010	U5	Nexperia	74HC7541D	20-SOIC 12 8x7 5x1 27mm	74HC7541D	Digi-Key	1727-6344-1-ND
55	-	20 3010	05	пехрени	7411075410	8coic 1027mm 309x409m	7411075410	Digi Key	1/2/ 0344 1 110
40	4	IC REGUNEAR POS ADU 1 24 850P	116 117 118 119	Diodes Inc	AP7167-SPG-13	m nad 204v303mm	AP7167	Digi-Key	AP7167-SPGDICT-ND
-0	4		00,07,00,03	RAF Electronic	AT 7107-3F0-13	0 125" dia drill hole 4	Screw Thread #4-40	Digi-Key	ALT 107-3FODICT-ND
41	4	HEX STAND-OFE #4-40 ALLIMINUM 1"	N/A	Hardware	2112-440-41	corners	Stand_Off L=1"	Digi-Key	1772-1052-ND
71	4		14/5	Keystone	2112 490-AL	0 125" dia drill hole 4	Screw Thread #4-40	Digi-Key	1/12 1032-110
42	4	MACHINE SCREW PAN PHILLIPS 4-40	N/A	Electronics	9900	corners	Screw Thread L=0.25"	Digi-Key	36-9900-ND
43	1		1110	Cobham	LITOAVS33P	cfn28n25mil		Cohham	N/A
τo	1	VOLIAGE SUPERVISOR 3.3V 4-CE.	010	CODITAILI	010473337		010403335	CODIIam	11/15

Notes:

1) For radiation or other harsh environment designs, the three required CAES Space-grade 8-b RHMSI Logic parts are listed here with the equivalent Commercial-grade BoM 8-b MSI Logic parts.

Space-grade: CAES UT54ACS/ACTS08E Quad 2-Input AND Gate Space-grade: CAES UT54ACS/ACTS02E Quad 2-Input NOR Gate Space-grade: CAES UT54ACS/ACTS04E Hex Inverters Commercial-grade: BoM Item #36, U2, IC QUAD 2-IN AND GATE Commercial-grade: BoM Item #37, U4, IC QUAD 2-IN NOR GATE Commercial-grade: BoM Item #38, U3, IC HEX INVERTERS

2) The Space-grade logic parts all share a common package and footprint: 14-L Ceramic FP. The Commercial-grade logic parts all share a common package and footprint: 14-L Plastic SOIC. Both space-grade and commercial 8-b MSI Logic package footprint types are available from CAES along with the UT04VS33P Quad Voltage Supervisor in a 28-L CFP package. The package pinouts are identical between these Space-grade and Commercial-grade logic parts, for the respective logic function.

3) Links to CAES 8-b RHMSI product Data Sheet pages here:

https://caes.com/sites/default/files/documents/Datasheet-UT54ACxS08E.pdf

Quadruple 2-Input AND Gates UT54ACS08E/UT54ACTS08E

https://caes.com/sites/default/files/documents/Datasheet-UT54ACxS02E.pdf

Quadruple 2-Input NOR Gate UT54ACS02E/UT54ACTS02E

https://caes.com/sites/default/files/documents/Datasheet-UT54ACS04E.pdf

Hex Inverters UT54ACS04E (The UT54ACTS04E Data Sheet is available separately.)

Table 2. Printed Circuit Board (PCB) Specifications

Generic Specifications										
Board Dimensions	$4.0" \times 4.0"$ (10.16cmx10.16cm), 0.062" Overall Thickness									
Board Maximum Weight	NA									
Number of Layers:	4									
Dielectric Material	FR-4									
Dielectric Thickness	NA									
Outer Layer Copper Weight	1oz									
Inner Layer Copper Weight	1oz									
Differential Line Spacing	NA									
Default Trace Width	12 mil									
Voltage Rails	Voltage (V)	Current (A)								
Input	5.0	0.1								
Internal Rail 1	3.3	0.1								
Output 1	3.3	0.1								
Output 2	2.5	0.1								
Output 3	1.8	0.1								
Output 4	1.5	0.1								
Layer Definition	Name	Туре								
Layer 1	Тор	Components + Signal Routing								
Layer 2	GND	GND=VSS=0V								
Layer 3	VDD Split Plane	VDD=5.0V, 3.3V								
Layer 4	Bottom	Signal Routing								

CAES Intelligent Power Sequencer Using the UT04VS33P Quad Voltage Supervisor

Figure 7. Schematic – Page 1 of 5: Input Power

CAES Intelligent Power Sequencer Using the UT04VS33P Quad Voltage Supervisor

Figure 8. Schematic - Page 2 of 5: Control Logic

Figure 9. Schematic - Page 3 of 5: Output Regulators

CAES Intelligent Power Sequencer Using the UT04VS33P Quad Voltage Supervisor

Figure 11. Schematic - Page 5 of 5: Voltage Supervisor

CAES Intelligent Power Sequencer Using the UT04VS33P Quad Voltage Supervisor

REVISION HISTORY

Date	Revisions	Author	Change Description
12-12-2014	0.0.1	СВ	Initial Release
04-29-2021	1.0.0	BM	Reduced Logic Gate Count

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Colorado Springs Inc. d/b/a Cobham Advanced Electronic Solutions (CAES) reserves the right to make changes to any products and services described herein at any time without notice. Consult an authorized sales representative to verify that the information in this data sheet is current before using this product. The company does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of the company or of third parties.

